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ABSTRACT—This paper describes coherent gradient sens-
ing (CGS) as an optical, full-field, real-time, nonintrusive, non-
contact technique for measurement of curvature and curva-
ture changes in single-layered and multilayered thin films de-
posited on substrates. The sensitivity of the basic CGS tech-
nique is enhanced using optical fringe multiplication to map
curvature in very flat specimens (κ ≤ 0.001 m−1). Subse-
quently, this curvature measurement technique is applied to
the determination of the yield properties of thin films subjected
to cyclic thermomechanical loading.

KEY WORDS—Thin films, curvature, stress, coherent gradi-
ent sensing

Introduction

As the electronics industry pushes for smaller and smaller
dimensions of metal interconnections and for more com-
plex multilayered structures, the mechanical properties and
stresses of thin films used for these interconnections will
be crucial to the lifetimes of ultra large scale integrated
circuits.1,2 However, the difficulty in measuring the mechan-
ical properties and stresses of interconnections increases as
their size decreases.3 Currently, the major concern for inter-
connection materials is the presence of residual stresses from
the fabrication process and additional stresses resulting from
thermal cycling.4,5

Typically, integrated circuit metallization consists of many
layers deposited onto a silicon substrate, very often at ele-
vated temperatures. The layers exhibit different mechanical,
physical and thermal properties, leading to high stresses in in-
terconnection structures. These stresses cause stress-induced
voiding,6−18 are directly related to electromigration19−25 and
may cause cracking of the substrate.3 All of the preceding are
leading failure mechanisms in integrated circuits. An under-
standing of stresses and their distribution and origins is a
crucial step in improving the reliability of integrated circuits.

Currently used experimental techniques for measuring
stresses are based either on direct measurements of strains in
the films using X-ray diffraction26,27 or on the measurements
of substrate curvature or deflection.28 Curvature and curva-
ture change measurements are typically related to the stress
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state in the layered structures by means of theoretical analy-
ses based either on approximate plate theories29,30 or, more
recently, on exact continuum mechanics formulation.31,32

The X-ray diffraction technique typically employed for
polycrystalline materials involves measuring d-spacings of
a single reflection for several orientations of the sample.26

This procedure determines strains along different directions
of the sample. The technique is nondestructive, does not
require special sample configurations and permits measure-
ments of all the components of stress in the film. However, it
is limited to crystalline materials (e.g., stresses in passivation
layers cannot be measured) and is difficult to use in situ dur-
ing film growth. Moreover, the method is strictly pointwise;
that is, full-field, instantaneous measurement of stresses is
not possible.

Curvature measurements in thin films can also be made
by high-resolution X-ray diffraction using a modified X-ray
rocking curve setup.27 With a translation stage added to the
conventional rocking curve system, the shift in the substrate
Bragg peak can be measured at different lateral positions
on a film deposited on a single crystal substrate. The aver-
age principal stresses can then be found from the peak shift.
However, this technique requires that calibration and curva-
tures be measured only relative to the reference calibration
specimen. The technique cannot be easily adapted for in situ
measurements because motion of the sample is required, and
because the method is strictly pointwise, full-field instanta-
neous curvature measurements are not possible.

Laser scanning is the most commonly used technique for
determining stresses in thin films by measuring curvature
changes of the substrate.28 This technique is very sensitive
and is capable of detecting up to 104 m radius of curvature.
However, the laser-scanning technique provides pointwise
information and could potentially miss localized anomalies
in specimen curvature. Even if complete curvature maps
were generated by scanning, these scans would involve finite
time and may not be adequate for time varying, nonuniform
surface curvature fields (e.g., a growing delamination due to
thermal cycling).

Techniques based on optical interferometry offer much
promise as a means for real-time, remote, nonintrusive,
full-field measurements of curvature and curvature changes.
However, standard interferometric techniques, such as
Twyman-Green interferometry,33,34 are sensitive to rigid-
body rotation and displacement of the specimen surface and,
thus, are very vibration sensitive. Moreover, because these
interferometric techniques measure surface topography, two
successive differentiations of the experimental data are re-
quired to obtain curvature.
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Recently, Rosakis et al.35,36 demonstrated coherent gradi-
ent sensing (CGS) as a full-field, optical technique for the in-
stantaneous measurement of curvature and curvature changes
in various thin film structures. This technique is insensitive
to rigid-body rotation and translation of the curved speci-
men. Also, only one differentiation of the experimental data
is required to obtain the curvature components.

In this paper, the sensitivity of the CGS technique is en-
hanced using optical fringe multiplication. This enhanced
CGS technique is then applied successfully to characterize
yield properties of thin films.

Curvature Measurement Using CGS

Figure 1 shows a schematic of the CGS setup in reflection.
A coherent, collimated laser beam is directed to the specularly
reflecting specimen surface by means of a beam splitter. The
reflected beam from the specimen then passes through the
beam splitter and is incident upon a pair of identical high-
density (40 lines/mm) Ronchi gratings, G1 and G2, separated
by a distance ∆. The diffracted orders from the two gratings
are spatially filtered using a filtering lens to form distinct
diffraction spots on the filter plane. An aperture placed in
this plane serves to filter out the diffraction order of interest,
which is then imaged onto the film plane. A photograph of
the actual experimental setup is shown in Figure 2.

The interpretation and working principle of CGS was pre-
sented by Lee et al.37 using Fourier optics and by Rosakis
et al.35 using simple geometric optics. For the case of wave
front “shearing” in either the x1- or the x2-direction, the CGS
interferograms can be interpreted as

∂S(x1, x2)

∂xa

= n(a)p

∆
n(a) = 0, ±1, ±2, . . . , (1)

where S(x1, x2) represents the optical wave front reflected
from the specimen surface, n(α) are the fringes observed for
shearing along the xα-direction, p is the grating pitch, ∆ is
the grating separation and α ∈ {1, 2}. Equations (1) govern
the formation of interferograms using the technique of CGS.

For a curved surface, the optical wave front may be inter-
preted in terms of the topography of the surface. Consider a
specularly reflective specimen whose curved surface (i.e., the

Fig. 1—Schematic of the coherent gradient sensing setup in
reflection mode

Fig. 2—Photograph showing the coherent gradient sensing
interferometer used to measure curvature. The specimen
is placed inside a box furnace, which can provide thermal
cycling

reflector) is given as x3 = f (x1, x2). Then, it can be shown
that35,37

S(x1, x2) = f (x1, x2)

(
2

1 − f 2
,1 − f 2

,2

)
. (2)

Assuming and substituting eq (2) in eqs (1), we get

∂f (x1, x2)

∂xa

≈ n(a)p

2∆
n(a) = 0, ±1, ±2, . . . , (3)

where α ∈ {1, 2}. Equations (3) are the basic governing equa-
tions that relate CGS fringe contours to in-plane gradients of
the specimen surface x3 = f (x1, x2).

For a shallow surface given by x3 = f (x1, x2), the com-
ponents of the curvature tensor are expressed as35

καβ ≈ f,αβ α, β ∈ {1, 2}, (4)

where καβ is the symmetric curvature tensor whose compo-
nents κ11 and κ22 are the “normal curvatures” and κ12 (= κ21)
is the “twist.” The principal values of καβ are the principal
curvatures. Substituting eqs (4) into eqs (3), we get the basic
equations that relate CGS fringes to specimen curvature,

καβ(x1, x2) ≈ ∂2f (x1, x2)

∂xa∂xβ
≈ p

2∆

(
∂n(a)(x1, x2)

∂xβ

)

n(a) = 0, ±1, ±2, . . . ,

(5)

where α ∈ {1, 2}. Equations (5) are the principal gov-
erning equations for determining curvature tensor fields,
καβ(x1, x2)(α, β ∈ {1, 2}), from CGS interferograms. In
this manner, CGS interferograms provide a full-field tech-
nique for determining the instantaneous value of the speci-
men curvature tensor at any point (x1,x2).

The CGS technique has been employed to determine cur-
vature tensor components in various thin film and microelec-
tronic specimens.35 The specimen was manufactured by the
Massachusetts Institute of Technology’s Lincoln Laborato-
ries and comprised multilayered thin films deposited on a
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single crystal silicon wafer. The layered structures of the
two specimens (multilayer A and multilayer B) are tabulated
in Table 1. CGS interferograms obtained from multilayer
A are shown in Figure 3. Separate interferograms were ob-
tained for wave front shearing in two orthogonal directions.
These interferograms were then digitized and numerically
differentiated to determine components of the curvature ten-
sor field as per eq (5). These curvature components, κ11,
κ22 and κ12, are plotted in Figure 4. The specimen exhibited
fairly uniform curvature toward the center despite consider-
able variation toward some of the edges. Also, there was
about an 18-percent difference in the normal curvatures, κ11
and κ22, measured along the x1 and x2 directions. This could
be due to inherent material anisotropy of the silicon substrate
and directional structural variation in the thin film coatings
associated with the fabrication process. The twist curvature,
κ12, was considerably smaller in magnitude than the normal
curvatures, κ11 and κ22, and had a maximum value near the
specimen edge.

Average curvature was obtained using high-resolution X-
ray diffraction for the sake of comparison with the CGS data.
Details of these measurements are given in Rosakis et al.35

Because high-resolution X-ray diffraction measures curva-
ture only in an averaged sense, the CGS data were also aver-
aged to facilitate a direct comparison of curvatures obtained
using the two techniques. Averaging of the curvature fields
obtained using CGS was done in the center of the specimen
because this is the area where X-ray diffraction measures av-
erage curvature. Table 2 lists the averaged curvature measure-
ments made using the two techniques for both multilayer A
and multilayer B specimens. As given in the table, the agree-
ment between the two techniques (for the κ22 component)
was excellent. Note that direct comparison between the abso-
lute curvatures measured by CGS and the relative curvatures
measured by X-ray diffraction was possible in these cases
because the reference specimen used to calibrate the X-ray
diffraction technique was “extremely flat” (κ < 0.002 m−1,
as determined by CGS).

CGS was also employed to determine the presence of a
surface defect in a chromium-coated silicon wafer (320 nm
Cr/324 µm Si). The CGS interferograms obtained for shear-
ing in the two directions are shown in Figure 5. The CGS
interferograms were analyzed in accordance with eq (5) to
determine components of the curvature tensor field. It is ap-
parent from the normal curvature component, κ11, shown in
Figure 6 that there is a highly localized region on the spec-
imen that exhibits very high curvatures relative to the rest
of the specimen. This region of high curvature represents
a “defect” in the form of a localized nonuniformity of the
specimen surface. Whatever the cause of this surface nonuni-
formity, CGS interferometry is shown to be capable of suc-
cessfully identifying such surface anomalies because of its
full-field nature. Other commonly used curvature measure-
ment methods such as high-resolution X-ray diffraction26,27

and the laser-scanning technique28 provide pointwise infor-
mation and could potentially miss such localized anomalies.
Moreover, even if complete curvature maps were to be gen-
erated by scanning, these scans would involve finite time and
might not be adequate for time varying, nonuniform surface
curvature fields (e.g., a growing delamination due to thermal
cycling). On the other hand, CGS produces an instantaneous
full-field map of the entire curvature tensor field.

Fig. 3—Coherent gradient sensing interferograms obtained
for the multilayer A specimen: (a) shearing along x1, (b) shear-
ing along x2

Sensitivity Enhancement for CGS

The minimum curvature that is measurable using CGS is
estimated as follows. Consider the limiting case of a highly
shallow specimen in which only one fringe order is observed
when the shearing distance equals half the specimen width.
Then, using a finite difference relation for the phase change
in the optical wave front,

δS = S

(
x1, x2 + d

2

)
− S(x1, x2) = λ, (6)

where d/2 is half the specimen width and represents the
shearing distance and λ is the wavelength of light. Thus,
normal curvature is approximated as

κ22 ≈ ∂2f

∂x2
≈ 1

2

δS

(d/2)2
= 2λ

d2
, (7)
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TABLE 1—LAYERED STRUCTURE OF MULTILAYER A AND MULTILAYER B SPECIMENS OBTAINED USING RUTHERFORD
BACK SCATTERING

Layer Constituent Multilayer A Specimen Multilayer B Specimen
TiN — 50 nm

Al-x%Si 500 nm 500 nm
Ti 30 nm 30 nm

TiN 100 nm 100 nm
SiO2 420 nm 420 nm

Si (substrate) 506 µm 506 µm

TABLE 2—CURVATURES FOR MULTILAYER A AND MULTILAYER B SPECIMEN OBTAINED USING COHERENT GRADIENT
SENSING (CGS) (AVERAGED OVER SPECIMEN CENTER) AND HIGH-RESOLUTION X-RAY DIFFRACTION

Multilayer A Specimen Multilayer B Specimen
Curvature CGS X-ray Diffraction CGS X-ray Diffraction

κ11 0.039 m−1 — 0.024 m−1 —
κ22 0.048 m−1 0.050 m−1 0.039 m−1 0.042 m−1

κ12 = κ21 −0.014 m−1 — −0.004 m−1 —

Fig. 4—Curvature tensor components, κ11, κ22 and κ12, ob-
tained from coherent gradient sensing interferograms for the
multilayer A specimen

Fig. 5—Coherent gradient sensing interferograms obtained
for a thin film chromium-coated silicon wafer with a localized
surface defect: (a) shearing along x1, (b) shearing along x2
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Fig. 6—Normal curvature, κ11, for a thin film chromium-coated
silicon wafer with a localized surface defect as obtained from
coherent gradient sensing interferograms

where we have used the relation S(x1, x2) ≈ 2f (x1, x2).
Therefore, for a typical specimen width of 50 mm and wave-
length of light of 632.8 nm, we obtain a limiting minimum
value of curvature, κ22 ≈ 0.001 m−1, that is, a maximum
radius of curvature of 1000 m. Thus, the technique needs to
be enhanced for its application to very flat specimens with
curvatures κ ≤ 0.001 m−1.

The sensitivity of CGS can be enhanced using an optical
fringe multiplication technique. This technique employs a
partial mirror placed in front of the reflective specimen, as
shown in Figure 7. The partial mirror is placed at a slight
inclination angle, α, with respect to the specimen. In this
configuration, light is reflected back and forth between the
mirror and the specimen, as illustrated in Figure 8. From this
figure, it is also clear that each beam of light emerges from the
partial mirror at an angle that depends on the number of times
the light beam has reflected off the specimen surface. The
slight inclination angle α allows the various reflection orders
to be separated spatially and has been greatly exaggerated to
illustrate the multiple reflection effect.

Each subsequent reflection of the light beam from the
curved specimen surface introduces additional change in the
optical path length, as compared to reflection from a flat ref-
erence surface. The net change in optical path length at point
(x1, x2) for the N th-order reflection is given as

S(x1, x2) ≈ 2Nf (x1, x2). (8)

Substituting eq (8) into eqs (1), we get

∂f (x1, x2)

∂xa

≈ n(a)p

2N∆
n(a) = 0, ±1, ±2, . . . , (9)

where α ∈ {1, 2} and N is the fringe multiplication order.
Equations (9) are the basic governing equations that relate
CGS fringe contours to in-plane gradients of the specimen
surface x3 = f (x1, x2) for a given fringe multiplication or-
der. Substituting eqs (9) into eqs (4), we get the equations
that relate CGS fringes to specimen curvature for the case of
fringe multiplication:

καβ(x1, x2) ≈ ∂2f (x1, x2)

∂xa∂xβ
≈ p

2N∆

(
∂n(a)(x1, x2)

∂xβ

)

n(a) = 0, ±1, ±2, . . . , (10)

where α ∈ {1, 2}, β ∈ {1, 2} and N is the fringe multiplica-
tion order. Thus, the smallest value of curvature that can be
measured decreases by a factor equal to the fringe multipli-
cation order.

Typical fringe patterns obtained using fringe multiplica-
tion are shown in Figure 9. It is clear from the figure that this
technique greatly increases the sensitivity of CGS in measur-
ing curvature tensor fields.

Measurement of Yield Properties of Thin Films on
Substrates

The stress-strain behavior and yield properties of thin films
play an important role in governing their mechanical response
and modes of failure. Moreover, the structure and properties
of a material when it is deposited as a thin film are very differ-
ent from those of the bulk material. In addition, the behavior
of a thin film attached to a substrate may be significantly dif-
ferent from that of a freestanding film. Thus, it is necessary
to characterize the stress-strain behavior and yield properties
of thin films as deposited on substrates.

Standard material testing techniques employed to study
the stress-strain behavior of bulk materials are not applica-
ble to the study of thin films. This is primarily due to the
much smaller length scales involved in the latter. To study
the deformation and mechanical properties of thin films, we
need alternative methods for loading the thin film in a con-
trolled manner and measuring the resulting deformation. The
loading of thin films deposited on substrates was achieved by
varying the temperature of the thin film–substrate system.
Usually, there is a significant mismatch in the thermal coef-
ficients of expansion of the thin film and the substrate. This
mismatch gives rise to tensile/compressive stresses in both
the thin film and the substrate as the temperature is varied.
Thermal loading of the thin film–substrate system in this fash-
ion also results in a change in curvature of the system, which
can be used to determine specimen deformation.

If we assume perfect adhesion between the thin film and
the substrate, the stress in the film is given as29

σ
f
aa = Est

2

6(1 − νs)h
κaa α ∈ {1, 2} no sum over α, (11)

where σ
f
αα is the film stress, h is the film thickness, Es is

Young’s modulus of the substrate, νs is Poisson’s ratio of the
substrate, t is the substrate thickness and καα is the normal
component of the curvature tensor.

The above relation assumes that the substrate is linear
elastic and isotropic and the film thickness is much less than
that of the substrate. However, it does not involve any con-
stitutive assumptions for the thin film, which is allowed to
be of arbitrary properties. This is a distinct advantage for
our investigation, which is aimed at uncovering the virtually
unknown stress-strain behavior of the film.

At low values of curvature, the film is expected to remain
elastic. In such a case, one is able to relate the elastic film
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Fig. 7—Schematic of the coherent gradient sensing setup in reflection mode using a partial mirror for fringe multiplication

Fig. 8—Light reflection and transmission between the
specimen surface and partial mirror

stress to the temperature increase via a relation that involves
elastic properties of the film and the substrate as follows:

σf = Ef /(1 − νf )[
3h

t

Ef /(1 − νf )

Es/(1 − νs)
− 1

] (αf − αs)∆T , (12)

where σf is the film stress, h is the film thickness, t is the
substrate thickness, Ef and νf are Young’s modulus and Pois-
son’s ratio of the film, Es and νs are Young’s modulus and
Poisson’s ratio of the substrate, αf is the coefficient of ther-
mal expansion of the film, αs is the coefficient of thermal
expansion of the substrate and ∆T is the change in tempera-
ture. The deviation of the film stress as obtained from eq (11)
from that obtained from the linear elastic case represented by
eq (12) will then correspond to cases in which the film is
deforming in an inelastic manner. This inelastic deforma-

Fig. 9—Fringe multiplication coherent gradient sensing inter-
ferograms obtained for a thin film chromium-coated silicon
wafer with a localized surface defect

tion represents plastic deformation of the thin film, either in
tension or in compression, during the course of the thermal
cycle.

For the case in which the film deforms in an elastic manner,
one can also relate the normal variation of the stresses in the
thin film at a distance x3 from the film-substrate interface to
the curvature component:30
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σ
f
aa(x3) = κaa · Es

1 − νs

{
− t3

6h(h + t)[
1 +

(
h

t

)3

ρ

]
+ x3ρ

}

α ∈ {1, 2} no sum over α

(13)

ρ = [Ef /(1 − νf )]/[Es/(1 − νs)]. (14)

Thermal cycling experiments were conducted on an alu-
minum film sputtered onto a silicon substrate. Details of
the thin film specimen are given in Table 3. The specimen
was subjected to a predetermined and controlled thermal cy-
cle. It was heated at a steady rate of 9.4 × 10−2 ◦C/s from
25◦C to 340◦C and then cooled back to 25◦C at a steady rate
of −11.7 × 10−2 ◦C/s. The slow heating and cooling rates
were used to maintain the specimen in thermal equilibrium
throughout the experiment. As the specimen was subjected
to thermal cycling, the curvature was measured and recorded
in real time using CGS. Figure 10 shows a variation of the
specimen curvature, κ22, as a function of the specimen tem-
perature. From this variation of specimen curvature, it is
possible to determine the stress in the aluminum thin film us-
ing eq (11). The variation of stress in the aluminum thin film
is plotted in Figure 11. It is evident from the figure that the
temperature cycling of the Al-Si specimen resulted in stress
cycling of the thin film itself.

At the start of the experiment, the specimen had a nonzero
curvature and was in a state of residual tension, which was
due to specimen fabrication at an elevated temperature. The
aluminum thin film was sputtered onto the silicon substrate
at about 200◦C. When this specimen was cooled to ambient
room temperature, the mismatch in the coefficients of thermal
expansion resulted in a state of high residual tension in the
film. As the specimen was heated during the experiment, the
tensile stresses in the aluminum film decreased linearly as it
underwent elastic unloading. The stresses went to zero close
to a specimen temperature of 0◦C, after which the stresses
became compressive. Upon further heating, the compressive
stresses increased and the aluminum film yielded in com-

Fig. 10—Variation of specimen curvature as a function of
temperature

pression. This point was marked by a deviation from lin-
earity in the stress-temperature variation. The compressive
stresses continued to increase as the specimen was heated up
to 340◦C. At this point, the aluminum film was in a state of
biaxial compression. As the specimen was cooled, the com-
pressive stresses in the aluminum film decreased linearly as
it underwent elastic unloading. The stresses once again be-
come zero around 295◦C. Upon further cooling, the film was
subjected to elastic loading and acquired increasingly tensile
stresses. These stresses caused the film to yield at 240◦C
when the film stress, σ22, reached a value of 100 MPa. The
tensile yield point at 240◦C was marked by the deviation
from linearity in the stress-temperature variation, as shown
in Figure 11. Cooling the specimen further only increased
the tensile stress in the aluminum film. As illustrated by this
experiment, it is possible to use temperature cycling and cur-
vature measurement to determine the stress-strain behavior
and yield properties of thin films deposited on a substrate.
In this experiment, the yield stress of the aluminum film at
240◦C was determined to be 100 MPa in tension. To deter-
mine this, we have assumed that the thin film is plastically
isotropic and obeys the Huber–Von Mises yield criterion:

1

2
SijSij = τ2

o = σ2

3
where Sij = σij − 1

3
σkkδij . (15)

In the above relation, Sij are the Cartesian components of
the stress deviator, σij are the components of the Cauchy
stress tensor, τo is the yield stress in shear and ±σo are the
yield stresses in tension or compression. If one assumes that
every point in the film is under a state of pure biaxial tension
or compression, that is, if σ

f

11 = σ
f

22 = σf with all other
stresses vanishing, that is, σ33 = σ12 = σ32 = σ31 = 0,
then the surviving components of the deviatoric stress are
S11 = σf /3, S22 = σf /3, S33 = 2σf /3 and Sij = 0 (i �= j )
and the yield criterion reduces to∣∣∣σf

∣∣∣ = σo. (16)

Equation (16) now implies that under the assumptions stated
above, the magnitude of the biaxial stress, σf , at the onset of
yielding is equal to the yield stress of the material in uniaxial

Fig. 11—Variation of thin film stress as a function of the
specimen temperature
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TABLE 3—DETAILS FOR THE Al-Si SPECIMEN USED IN THE TEMPERATURE-CYCLING EXPERIMENT TO
DETERMINE YIELD PROPERTIES OF THE ALUMINUM THIN FILM

Property Al Thin Film Si Substrate
Thickness 1.1 µm 200 µm
Young’s modulus 75 GPa 130 GPa
Poisson’s ratio 0.32 0.32
Coefficient of thermal expansion 23 × 10−6/◦C 3 × 10−6/◦C

tension/compression; that is, σ
f

11 = σ
f

22 = σf = σo. For the
experimental system described above, the yield stress was
found to be equal to 100 MPa at 240◦C as determined from
the deviation of the stress temperature variation from elastic
linearity during the purely tensile portion of the thermal cycle.

Summary

This paper presents the full-field optical technique of CGS
as a tool for instantaneously measuring curvature tensor fields
in thin films. CGS offers several advantages inherent to all
full-field optical techniques. It provides real-time, remote,
nonintrusive, full-field measurements of curvature. More-
over, because it provides out-of-plane gradients of the spec-
imen surface topography, x3 = f (x1, x2), the technique is
insensitive to rigid-body rotation or displacement of the spec-
imen surface. Thus, unlike other interferometric techniques,
such as Twyman-Green interferometry,33,34 CGS is relatively
vibration insensitive. In addition, because CGS measures
gradients of surface topography, only one differentiation op-
eration of the experimental data is required to obtain curva-
ture. This is in contrast to other traditional interferometric
techniques in which curvature calculations involve two suc-
cessive differentiation operations. Finally, the application of
CGS requires only a specularly reflective surface. Unlike X-
ray diffraction methods that require the substrate to be a single
crystal, CGS is not restricted by the form of the substrate.

To enhance the sensitivity of the CGS technique, we em-
ployed the optical method of fringe multiplication by intro-
ducing a partial mirror in front of the specimen. The effect
of this partial mirror is to reflect light back at the specimen
surface. Each such reflection increases the optical path differ-
ence introduced in the light beam due to specimen curvature
and, thus, enhances the sensitivity of the CGS technique. Be-
cause the sensitivity is increased using an optical method, all
the advantages of the CGS technique are maintained.

Finally, curvature measurement was employed to deter-
mine the stress-strain behavior and yield properties of an
aluminum thin film deposited on a silicon substrate. The
film was loaded by varying the temperature of the specimen,
and the film stress was determined from measurements of
specimen curvature. The tensile yield stress of a 1.1-µm
aluminum film was determined to be 100 MPa.
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